Альтернативная энергия для частного дома

Содержание
  1. Как использовать бесплатное электричество?
  2. Нюансы применения ветрогенераторов
  3. Можно ли сделать бестопливный генератор своими руками
  4. Масляный способ сбора БТГ
  5. Сухой способ
  6. Приливы и отливы
  7. Плюсы и минусы внедрения автономного питания
  8. Кондиционеры
  9. Как сделать ветрогенератор?
  10. Изготовление ветроколеса для дома
  11. Что такое альтернативное отопление частного дома
  12. Последователи Тесла
  13. Карл Фердинанд Браун
  14. Лестер Нидершот
  15. Эдуард Грей
  16. Автономная гаражная подсветка и способы ее реализации
  17. Что выбрать
  18. Гальванический элемент
  19. Биотопливо – еще один альтернативный источник
  20. Энергия солнца — в электричество
  21. Есть ли будущее у альтернативных источников энергии
  22. Мифы и реальность
  23. Виды альтернативных источников энергии.
  24. Ветровая энергетика.
  25. Гелиоэнергетика — дар Солнца.
  26. ГЭС — использование силы воды.
  27. Геотермальная энергетика — тепло Земли.
  28. Биотопливо.
  29. Что можно попробовать сделать?
  30. Схема по Белоусову
  31. Социальный норматив потребления
  32. Ветрогенераторы
  33. Солнечные панели
  34. Солнечные батареи
  35. Популярные источники возобновляемой энергии

Как использовать бесплатное электричество?

Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения

Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопления статического электричества из воздуха могут привлекать молнии

Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети — к пожарам. Обеспечение дома электричеством в домашних условиях нужно начинать с детального изучения методов и законов физики.

Следует учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется накапливать в аккумуляторах, а на всякий случай еще и иметь запасной вид электрообеспечения.

Нюансы применения ветрогенераторов

В настоящее время ветряные турбины используются в различных сферах народного хозяйства. Промышленные модели разной мощности применяются нефтегазовыми, телекоммуникационными компаниями, буровыми и геолого-разведочными станциями, производственными объектами и государственными учреждениями.

Ветряк может использоваться в качестве дополнительного источника энергии в больницах и других учреждениях, чтобы обеспечить непрерывную подачу электроэнергии в аварийных ситуациях

Особо следует отметить важность применения ветряных установок для оперативного восстановления нарушенного электричества при катаклизмах и стихийных бедствиях. С этой целью ветрогенераторы часто применяются подразделениями МЧС. Бытовые ветротурбины прекрасно подходят для организации освещения и отопления коттеджных поселков и частных домов, а также для хозяйственных целей на фермах

Бытовые ветротурбины прекрасно подходят для организации освещения и отопления коттеджных поселков и частных домов, а также для хозяйственных целей на фермах.

При этом следует учесть некоторые моменты:

  • Устройства до 1 кВт могут дать достаточное количество электроэнергии лишь в ветряных местах. Обычно выработанной ими энергии хватает лишь на светодиодное освещение и питание мелких электронных приборов.
  • Чтобы полностью обеспечить электричеством дачу (загородный домик) понадобится ветряной генератор мощностью свыше 1 кВт. Такого показателя достаточно для питания осветительных приборов, а также компьютера и телевизора, однако его мощности недостаточно, чтобы снабдить электричеством круглосуточно работающий современный холодильник.
  • Для обеспечения энергией коттеджа понадобится ветряк мощностью 3-5 кВт, однако даже такого показателя не хватит для отопления домов. Чтобы воспользоваться подобной функцией необходим мощный вариант, начиная от 10 кВт.

При выборе модели следует учесть, что показатель мощности, указанный на устройстве, достигается лишь при максимальной скорости ветра. Так, установка в 300В будет вырабатывать указанное количество энергии лишь при скорости потоков воздуха в 10-12 м/с.

Желающим соорудить ветрогенератор собственными руками мы предлагаем следующую статью, в которой детально изложена полезная информация.

Можно ли сделать бестопливный генератор своими руками

Если вы всё ещё сомневаетесь, попробуйте собрать такой генератор самостоятельно. В сети есть много разных схем по сбору БТГ в домашних условиях. Среди них нашлось два довольно простых способа: мокрый (или масляный) и сухой.

Масляный способ сбора БТГ

  • Трансформатор переменного тока – необходим для создания постоянных сигналов тока;
  • Зарядное устройство – обеспечивает бесперебойную работу собранного устройства;
  • Аккумулятор (или обычная батарея) – помогает накоплению и сохранению энергии;
  • Усилитель мощности – увеличит подачу тока;

Трансформатор нужно подключить сначала к батарее, а затем к усилителю мощности. Теперь к этой конструкции подсоединяется зарядное устройство, и портативный БТГ готов!

Сухой способ

  • Трансформатор;
  • Прототип генератора;
  • Незатухающие проводники;
  • Динатрон;
  • Сварка.

Объедините трансформатор с прототипом генератора при помощи незатухающих проводников. Используйте для этого сварку. Динатрон нужен для контроля работы готового прибора. Такой генератор должен проработать около 3 лет.

Успех и эффективность этих конструкций во многом зависят от вашей удачи. Она же потребуется, чтобы найти все необходимые элементы, указанные в инструкции. Но наверно вы уже догадались, что всё это вряд ли будет работать.

Приливы и отливы

Еще один интересный альтернативный источник энергии, который широко применяется в морских странах. Благодаря естественным приливам и отливам, вода постоянно движется. Если установить на некоторой глубине водяные турбины, то они, используя это движение масс воды, будут вырабатывать довольно немалую мощность. Примечательно, что даже учитывая низкую скорость воды от приливов и отливов, водяные турбины могут показывать высокую эффективность работы. Это можно увидеть на примере крупнейшей в мире приливной электростанции, находящейся во Франции и способной давать целых 240 мВт мощности.

В качестве заключения стоит сказать, что это не все возможные способы получения тока. Они совершенствуются и разрабатываются постоянно, но наибольшего практического результата удалось добиться именно указанными методами. Они уже сейчас способны составить достойную альтернативу традиционным вариантам получения электричества, а в некоторых случаях полностью их заместить.

Плюсы и минусы внедрения автономного питания

Неоспоримыми достоинствами установки индивидуальной электросети считаются:

  • независимость от магистрального электроснабжения;
  • минимальная себестоимость одного киловатта электротока;
  • стабильность электрического снабжения;

Наличие автономного источника питания в доме позволяет бесперебойно получать электроток даже тогда, когда другие временно лишены такой возможности из-за проведения ремонта на ЛЭП.

Недостатки:

  • высокая цена оборудования;
  • расходы по обслуживанию системы оплачивают сами пользователи;
  • для размещения независимого комплекса требуется пространство.

Вышеописанные положительные и отрицательные стороны автономного электроснабжения касаются всех разновидностей существующих систем. При этом у каждой из них дополнительно есть свои индивидуальные достоинства, недостатки. Последнее в некоторой мере влияет на вырабатываемую электрическую мощность за единицу времени, величину расходов на ее производство.


Используя автономное энергообеспечение, владелец дома становится полностью независимым в плане получения электроэнергии для потребленияИсточник elektrikexpert.ru

Кондиционеры

Кондиционер — самый доступный и простой альтернативный источник отопления дома. Можно установить один мощный на весь этаж или по одному в каждой комнате.

Самый оптимальный вариант использования кондиционера – поздней весной или ранней осенью, когда на улице еще не слишком холодно и газовый котел можно пока не запускать. Это позволит сократить расход газа за счет электричества и не превысить месячную норму потребления газа.

Важные моменты:

  • Котел и кондиционер должны быть увязаны между собой для работы в паре. То есть, котел должен видеть, что работает кондиционер и не включаться в работу пока в помещении тепло. Здесь не обойтись без настенного термостата.
  • Отопление электричеством не дешевле газа. Поэтому не стоит полностью переключаться на обогрев кондиционерами.
  • Не все кондиционеры можно использовать при нуле и морозах.

Как сделать ветрогенератор?

Вертикальные ветрогенераторы просты в конструкции. Их легко смастерить для использования в частных домах, причем можно выполнить это своими руками. Данный вид альтернативного источника бладают высокой эффективностью, КПД и надежностью эксплуатации.

Вертикальное расположение ветряка у дома позволяет лучше улавливать потоки ветра и не переживать за устойчивость всей конструкции.

Изготовление ветроколеса для дома

Альтернативное ветроколесо имеет лопасти, насаженные на конус или цилиндр. Подшипник будет вращать их на валу, далее идет редуктор и генератор электрического тока. Включить в цепь не получится напрямую. Необходимо далее трансформировать энергию в переменный ток.

Что такое альтернативное отопление частного дома

Альтернативное отопление представляет собой способы и системы теплоподачи для частного дома, дающие возможность не использовать газ или электрическую энергию. Как правило, источники тепла в этом контексте – бесплатные ресурсы природы, доступные каждому из нас. Например, такие, как солнце и ветер.

Почему это выгодно:

  • Для обогрева помещения используются такие тепловые источники, которые не требуют оплаты счетов от поставщиков;
  • На создание установок работающих с ветром или солнцем уйдет меньше денежных трат, чем на обустройство привычных отопительных систем;
  • Повышение цен на коммунальные блага никак не отразится на использовании альтернативы обогрева жилья.

Впрочем, альтернатива электрическому или газовому обогреву не только экономически выгодна, но и еще экологична, так как в процессе работы не сжигается древесина или иное топливо.

Последователи Тесла

После появления устройства Теслы через какое-то время над созданием генераторных агрегатов стали работать другие деятели науки.

Карл Фердинанд Браун

Физик Браун работал по изобретению безопорной тяги за счет воздействия электроэнергии. Ученый точно описал процесс образования мощности благодаря работе с источником энергии. Следующим изобретением после разработки Брауна стало генераторное устройство Хаббарда. В катушке этого агрегата происходила активация сигналов, что приводило к вращению магнитного поля. Мощность, которую вырабатывал механизм, была высокой, это позволяло всей системе делать полезную работу.

Лестер Нидершот

Следующим последователем стал Нидершот. Он создал устройство, которое включало в себя радиоприемник, а также неиндуктивную катушку. Похожими компонентами оснастил свою разработку физик Купер. Принцип работы устройства оборудования заключался в применении явления индукции без использования магнитного поля. Для его компенсации в структуру внедрялись катушки, оснащенные специальной намоточной спиралью либо двумя кабелями. Принцип действия устройства кроется в образовании мощности во вторичной цепи обмотки, причем для создания величины первичная катушка не нужна.

В соответствии с описанием концепция указывает на безопорную движущую силу в пространстве. Как утверждал ученый, гравитация позволяет поляризировать атомы. По его мнению, катушки, которые конструируются специфически, позволяют создавать поле и при этом не экранируют. Такие элементы обладают похожими техническими свойствами и параметрами с гравитационным полем.

Эдуард Грей

Одним из последователей Теслы был ученый Э. Грей. Он занимался разработкой генераторных устройств на основе рекомендаций и трудов Теслы.

Схема генераторного устройства Грея

Ниже описаны основные свойства и характеристики решений, надо которыми работал Грей:

  1. Трансформаторный узел монтируется в отдельном блоке. Этот элемент применяется для подключения к сети.
  2. При отсутствии возможности подключения устройства к сети могут применяться специальные аккумуляторы. Они маркируются на схеме как 40 и 18.
  3. Тумблер, отмеченный цифрой 48, применяется для переключения батарей. Заряд устройств производится от нагрузки с индуктивными свойствами.
  4. В указанном положении переключателя реле под номером 20 используется для поступления энергии от батареи 40 на трансформаторные обмотки. Последние устройства являются первичными и маркируются цифрой 22. Подача питания осуществляется переменно.
  5. В результате подачи напряжения на выходе вторичного устройства появляются высокочастотные сигналы прямоугольной амплитуды.
  6. В дальнейшем они подаются на диодное устройство, отмеченное цифрой 24. Устранение паразитных сигналов на выходе выполняется посредством конденсаторного устройства 16.
  7. Заряд подается на конверсионную трубку, где образуется эфирная волна. Она подается на сетки, которые отмечены маркировкой 34. Подача выполняется из области, расположенной ближе остальных к проводнику.
  8. При увеличении энергии, которая проходит через источник освещения, до конкретной величины, происходит активация реле 26. Это приводит к разрыву электроцепи. Пока этого не произойдет, батарея заряжается.
  9. Источник освещения под номером 28 используется для обеспечения защиты. Лампочка предотвращает подачу отрицательной составляющей сигнала на деталь 32.
  10. В результате на специальной сетке под номером 34 появляется мощный заряд. Посредством воздействия нагрузки 36 выполняется заряд аккумуляторной батареи.
  11. От скачков нагрузки генераторное устройство защищено специальными диодными элементами, они отмечены на схеме как 44 и 46.
  12. Реле под номером 42 используется для постоянного снижения заряда. Этот процесс происходит перед формированием генераторной установкой эфирной волны.

Автономная гаражная подсветка и способы ее реализации

В гараже автономное освещение необходимо в ситуации, когда на участке нет электричества или с ним бывают частые перебои. Поэтому, чтобы свет в гараже был всегда, многие автовладельце делают автономное освещение.

Подсветка гаража

Сегодня существует много способов сделать своими руками автономную подсветку гаража. Наиболее популярными среди автовладельцев являются следующие способы организовать свет в гараже без наличия в нем электричества:

  • размещение солнечных батарей;
  • установка ветрогенератора;
  • покупка бензинового генератора;
  • использование аккумулятора;
  • садовый светильник;
  • филиппинский фонарь.

Для лучшего понимания рассмотрим каждый способ подсветки более детально.

Что выбрать

Давайте разберёмся, какой вариант альтернативной энергии лучше. Солнечные батареи являются наиболее предпочтительным вариантом из-за простоты и экологичности. Однако они не работают в ночное время суток.

Ветрогенераторы хорошо подходят для местностей, где постоянно дуют сильные ветры. Функционируют и днём, и ночью, но если потоки воздуха ослабевают – эффективность становится равна нулю. Наилучшим вариантом является комбинация этих двух устройств. Тогда вы можете быть почти на 100% уверенными, что никогда не останетесь без электричества.

  • Генератор для дома — назначение устройства, подбор мощности и советы по ремонту основных типов генераторов

  • Ветряные электростанции для дома: подбор современных моделей и расчет их эффективности + инструкция как сделать своими руками
  • Бензиновый генератор — выбор, подключение и установка современных устройств. Рейтинг лучших генераторов для дома 2021 года!

А если вы нуждаетесь в горячем водоснабжении и отоплении, дополните систему дома тепловыми насосами. Они не требовательны в обслуживании, отсутствует необходимость покупать и где-то складировать топливо, как в случае, например, с твердотопливным котлом.

Гальванический элемент

Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.

Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.

Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.

На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.

Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.

Биотопливо – еще один альтернативный источник

Из сырья растительного или животного происхождения, а также продуктов их жизнедеятельности или органических отходов получают биотопливо и используют его в дальнейшем как альтернативный источник производства электрической и тепловой энергии для частных домов.

Биотопливо хорошо себя зарекомендовало как источник энергии

По агрегатному состоянию биотопливо бывает:

  • твердое – лузга, щепа, топливные гранулы, брикеты, дрова;
  • жидкое – этиловый, метиловый спирты, биодизель;
  • газообразное – биогаз, водород.

Существует деление биотоплива по способу его получения:

  • химический;
  • термохимический;
  • биологический.

Различных видов отопления для частного домовладения, где используются альтернативные источники тепла, достаточно много:

  • отопительные котлы на твердом/жидком/биотопливе;
  • тепловые насосы на термальной энергии;
  • солнечные коллекторы;
  • инфракрасные обогреватели;
  • теплый плинтус.

В России с ее огромными территориями далеко не всегда можно подключиться к газовой магистрали – работы могут оказаться очень дорогими. В этих условиях для частных домовладений становятся выгодными экономически альтернативные источники отопления:

  • брикеты;
  • пеллеты;
  • гранулы из соломы, торфа, древесины и щепы и т.д.

В России сельские жители в частных домах активно используют биотопливо разных видов органики:

  • навоза;
  • рапса, сои;
  • растительных отходов и т.д.

При наличии частного хозяйства или дома любой желающий способен приготовить биотопливо. Его можно делать из навоза. При определенных условиях исходные продукты перебраживают в специальных емкостях, после чего излишки влаги выпаривают. В результате выделяется биогаз.

В качестве исходной смеси применяют:

  • конский навоз, торф или солома;
  • навоз + льняная костра;
  • навоз + домашний мусор;
  • конский, коровий навоз.

Срок окупаемости оборудования для производства биотоплива составляет несколько лет, а сырье для его получения относится к возобновляемым источникам энергии. Используя необычные источники, можно бесплатно получить энергию для частного дома.

Энергия солнца — в электричество

Солнечные панели впервые начали делать для космических кораблей. В основе устройства лежит способность фотонов создавать электрический ток. Вариаций конструкции солнечных батарей великое множество и каждый год они совершенствуются. Самостоятельно изготовить солнечную батарею можно двумя способами:

Способ №1. Купить готовые фотоэлементы, собрать из них цепь и накрыть конструкцию прозрачным материалом

Работать нужно предельно осторожно, все элементы очень хрупкие. Каждый фотоэлемент имеет маркировку в вольт-амперах

Посчитать нужное количество элементов для сбора батареи необходимой мощности не составит большой сложности

Последовательность работы такая:

Посчитать нужное количество элементов для сбора батареи необходимой мощности не составит большой сложности. Последовательность работы такая:

  • для изготовления корпуса понадобится лист фанеры. По периметру прибиваются деревянные рейки;
  • в листе фанеры сверлятся отверстия для вентиляции;
  • внутрь помещается лист ДВП со спаянной цепью фотоэлементов;
  • проверяется работоспособность;
  • на рейки прикручивается оргстекло.

Способ №2 требует знаний электротехники. Электрическая цепь собирается из диодов Д223Б. Спаивают их по рядам последовательно. Помещают в корпус, накрытый прозрачным материалом.

Фотоэлементы бывают двух видов:

  1. Монокристаллические пластины обладают КПД 13% и прослужат четверть века. Безупречно работают только в солнечную погоду.
  2. Поликристаллические имеют КПД ниже, их срок службы всего 10 лет, но мощность не падает при облачности. Панель площадью 10 кв. м. способна произвести 1КВт энергии. При размещении на крыше стоит учитывать общий вес конструкции.

Готовые батареи размещают на самой солнечной стороне. Панель необходимо оснастить возможностью регулировки наклона угла по отношению к Солнцу. Вертикальное положение устанавливают во время снегопадов, чтобы батарея не вышла из строя.

Солнечную панель можно использовать с аккумулятором или без него. Днём потреблять энергию солнечной батареи, а ночью — аккумулятора. Либо днём пользоваться солнечной энергией, а ночью — от центральной сети электроснабжения.

Есть ли будущее у альтернативных источников энергии

Альтернативные источники возобновляемой энергии достаточно интересное и перспективное направление. К примеру, существует несколько эффективных приёмом выработки воды из воздуха. Правда здесь необходимо использовать генератор. Будут ли найдены новые подходы к решению этих проблем и к усовершенствованию методик – покажет время.

Получится ли использовать ресурсы с умом – большой вопрос

Watch this video on YouTube

Предыдущая Инженерия️ Реле напряжения 220 В для дома: как правильно организовать защиту бытовой техники
Следующая Инженерия Нужно ли подавать данные по счетчикам воды в 2019 году: и что будет, если не сделать это вовремя?

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.

Однако на практике  все получается далеко на так складно:

  • Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.

Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.

Виды альтернативных источников энергии.

Энергия ветра, солнца, воды, биотопливо, тепло Земли относительно неисчерпаемы и возобновимы. Преимущества альтернативных источников энергии неоспоримы, поскольку они сохраняют природные ресурсы. Кроме того, они в гораздо большей мере соответствуют требованиям экологической безопасности.

Ветровая энергетика.

Принцип использования силы ветра заключается в превращении кинетической энергии в электрическую, тепловую, механическую. Для получения электрической энергии используют ветровые генераторы. Они могут иметь различные технические параметры, размеры, конструкции, горизонтальную или вертикальную ось вращения. Паруса – классический пример использования силы ветра в морском транспорте, а ветряная мельница – преобразования в механическую энергию.

Диаметр лопастей и высота их расположения определяют мощность ветрогенератора. При силе ветра от 3 м/с генератор начинает вырабатывать ток и достигает максимальной величины при 15 м/с. Сила ветра свыше 25 м/с является критической – генератор отключается.

Гелиоэнергетика — дар Солнца.

Солнечная энергия как альтернативный источник энергии – естественное продолжение жизнетворящей миссии Солнца на нашей планете. Но пока человечество не научилось использовать ее напрямую. В настоящее время в качестве преобразователей солнечной энергии в электрическую применяют солнечные батареи, а для тепловой – солнечные коллекторы. Кроме того, в некоторых случаях используют совмещение двух видов.

Гелиотехнология заключается в нагреве поверхности солнечными лучами и в использовании нагретой воды для горячего водоснабжения, отопления или использования в паровых электрогенераторах. Для преобразования энергии солнца в тепловую используют солнечные коллекторы. Их общая мощность зависит от количества и мощности отдельных устройств, которые включены в систему солнечной или тепловой станции.

Солнечные батареи подразделяют на:

  • кремниевые
  • пленочные

Наибольшим спросом в настоящее время пользуются батареи с использованием кристаллов кремния, а самые удобные – пленочные. Кремниевые панели являются одним из лучших вариантов для частного дома.

ГЭС — использование силы воды.

Принцип действия турбин на гидроэлектростанциях заключается в воздействии силы воды на лопасти гидротурбины, которая вырабатывает электричество. Иногда к альтернативным видам энергии относят лишь те ГЭС, где не использованы мощные плотины, а выработка тока происходит под влиянием естественного течения воды. Это связано со значительным негативным воздействием мощных ГЭС на природные речные ландшафты, их обмелением и катастрофическими наводнениями.

Не вызывает возражений экологов использование естественной энергии морских и океанических приливов. Преобразование кинетической энергии в электрическую в этом случае происходит на специальных приливных станциях.

Геотермальная энергетика — тепло Земли.

Поверхность Земли излучает тепло не только в местах выброса горячих сейсмических источников, как, например, на Камчатке, но и практически во всех регионах планеты. Для извлечения тепла земли используют специальные тепловые насосы, а затем его преобразуют в электрическую энергию или используют как тепловую. Принцип действия установок базируется на законах термодинамики и физических законах поведения жидкостей и газа, в частности, фреона.

Тип конструкции насоса определяет первичный источник энергии, например, « грунт- воздух» или «грунт — вода».

Биотопливо.

Принцип получения биотоплива основан на переработке органических продуктов с помощью специальных установок. В ходе переработки вырабатывается тепловая или электрическая энергия. Виды биотоплива могут иметь жидкое, твердое или газообразное состояние. К твердым, например, относятся топливные брикеты, жидким – биоэтанол, к газообразным – биогаз. К его разновидностям относится свалочный газ, который образуется на свалках. Использование биогаза старых свалок помогает решить проблемы переработки отходов.

Что можно попробовать сделать?

Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с  теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа.  Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:

Извлечение электричества из земли будет происходить по такому принципу:

Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте

Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.

Социальный норматив потребления

Нормы расхода электроэнергии на человека в РФ устанавливаются федеральными законами, в которых закрепляется методика расчетов и применения, а также исходная величина – норматив годового потребления в расчете на одного человека. За последние два года (2017-2018) он составляет 350 кВт/ч.

Тарифное нормирование – прерогатива региональных властей, которые регулируют процесс ценообразования с учетом погодных и социальных условий. Количество зарегистрированных по адресу лиц и метраж жилплощади также используются в качестве основных параметров для калькуляции цен.

Определенную роль в этом отведена и стратегическим установкам местного и всероссийского масштаба, таким как важность экономного расходования энергии, помощь многодетным семьям и социально уязвимым группам, мотивация на установку индивидуальных счетчиков, поощрение потребления газа(или наоборот) и т.п. Для этого разрабатываются специальные градации и система коэффициентов.

Законодательно закрепленные нормативы годового расхода электроэнергии используются для регулирования отношений граждан и юридических лиц с поставщиками услуг в нестандартных и спорных ситуациях: при отсутствии, неисправности или выходе из строя счетчика.

Ветрогенераторы

Представляют собой комбинацию установленной на специальной мачте ветротурбины с лопастями и электрогенератора. При прохождении потоков воздуха через данную установку лопасти под их воздействием начинают вращаться и приводят в движение соединённый с редуктором внутренний вал.

Такая конструкция позволяет увеличить первоначальную скорость вращения. Редуктор подключён к генератору, который при вращении ротора вырабатывает электрический ток. Его излишки накапливаются в установленных аккумуляторах.

В зависимости от расположения оси вращения ветрогенераторы подразделяются на горизонтальные и вертикальные. Первый тип более популярен. Многие модели оснащены системой автоматического разворота по направлению ветра, значительно увеличивающей эффективность работы установки.

Преимущества данных устройств во многом аналогичны солнечным батареям. КПД может составлять от 25% до 47% в зависимости от конкретной модели и погодных условий.

Основными недостатками являются шум во время работы и низкочастотный инфразвук, негативно влияющий на состояние здоровья. По этой причине устанавливать мачту с устройством следует как можно дальше от жилья.

Солнечные панели

Сейчас все большую популярность завоевывают солнечные источники электроэнергии. Суть такого источника проста – имеются полупроводниковые фотоэлементы, в которых при попадании на них солнечных лучей генерируется электрический заряд.

Количество вырабатываемой энергии напрямую зависит от площади фотоэлементов, поэтому они собираются в панели.

Панель площадью в 1 м. кв. способна выдать 100 Ватт мощности с напряжением 20-25 В.

Чтобы полностью обеспечить дом электричеством площадь панелей должна быть значительной.

Из положительных качеств такого источника электроэнергии является его долговечность, полная экологичность, бесшумность.

Панели требуют минимум обслуживания, а электроэнергия, выработанная ими, является полностью бесплатной и доступной.

Но есть и недостатки. Для обеспечения электроэнергии в необходимом количестве, площадь панелей может достигать значительных размеров, которые еще нужно и правильно расположить.

Энергия эта непостоянна. В солнечные дни панели будут работать с максимальным выходом, но бывают же и пасмурные дни. Поэтому общее количество выработанной электрической энергии зависит от того, сколько солнечных дней в году в регионе, где располагается дом.

Еще один недостаток, причем весомый – это стоимость панелей. Цена за каждый Ватт выработанной энергии составляет сейчас примерно 1,5 $, то есть только за панели, вырабатывающие 1 кВт электроэнергии, придется выложить 1,5 тыс. долларов. А еще потребуется покупать и остальное оборудование, необходимое для работы системы.

Также читайте как сделать освещение на солнечных батареях для дачи.

Солнечные батареи

Принцип работы основан на способности электронных приборов, называемых фотоэлементами, преобразовывать энергию фотонов солнечного света в электрическую. Данный пример альтернативной энергии является самым распространённым.

В батареях, выпускаемых для частного применения, используются кремниевые фотоэлементы. Они бывают двух видов:

  • Поликристаллические. Очень хрупкие, поэтому требуют аккуратного обращения. Обладают малым КПД – не более 15%. Средний срок службы 20 лет. Преимущество – низкая цена.
  • Монокристаллические. Более надёжны. Срок службы может достигать 50 лет. КПД 25%. Недостатком является дороговизна.

Преимущества солнечных батарей:

  • неисчерпаемый источник энергии на несколько десятилетий;
  • простота установки и обслуживания, для работы нет необходимости в ежедневном участии человека;
  • долговечность;
  • отсутствие вредного воздействия на окружающую среду и человека.

Популярные источники возобновляемой энергии

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы.  Ярким примером тому являются водяные мельницы и ветряки. С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы.

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.  Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Оцените статью
ALPHA ДОМ
Добавить комментарий