- Европейские и американские нормы воздухообмена
- Зачем делать измерение воздухопроницаемости?
- Воздухопроницаемость • Поиск утечек тепла • Замеры • Консультация
- Влияние качества воздуха на здоровье человека
- Нормы вентиляции в офисных помещениях
- Почему правильный воздухообмен важен
- Разновидности систем вентиляции
- Возможность сочетания разных видов вентиляции
- Примеры расчета кратности воздухообмена
- Воздух жилых помещений по СанПиН в 2022 году
- Исходные данные для расчета воздухообмена
- Санитарные нормы вентиляции помещений – нормы СниП
- Расчет по площади помещения
- Рассмотрим расчеты на примере.
- Нормы вентиляции офиса
- Норма воздуха на человека в офисе
- Воздух производственных помещений по СанПиН в 2022 году
- 11.3 Примечания к примеру расчета
- Инструкция: вычисления по зданиям промышленного назначения
- Удаление избыточного тепла
- Выбор приточной установки
- Расчет по кратностям
Европейские и американские нормы воздухообмена
На некоторых объектах возникает курьезная ситуация, когда заказчик ради улучшения вентиляции просит провести расчёт вентиляции, используя европейские и американские нормы воздухообмена. На самом деле российские требования жёстче зарубежных. Нормы воздухообмена некоторых стран предписывают подавать гораздо меньше свежего воздуха на одного человека — вплоть до 15 м3/ч, что в 4 раза ниже российских требований, и соответствует заметно менее комфортным параметрам микроклимата.
Кроме того, встречаются случаи бездумного перевода на русский язык европейских и американских норм по строительству и устройству инженерных систем с последующим возведением их в ранг российских государственных стандартов. Безусловно, у зарубежных коллег есть чему поучиться, и имеет смысл перенять некоторый опыт. Но копирование норм без оглядки на климатические особенности нашей страны, разницу в архитектуре и другие факторы несёт в себе больше риска, чем пользы.
Зачем делать измерение воздухопроницаемости?
Измерение воздухопроницаемости характеризует качество “оболочки” любого здания или сооружения. Замеры воздухопроницаемости помогут решить следующие проблемы:
- Вам необходимо определить причины высоких затрат на отопление и вентиляцию.
- Воздух в помещении сильно влажный или сухой.
- В помещении растут грибки и плесень.
- Сквозняки.
- В помещение легко проникают внешние запахи и звуки.
- В помещении появляются изморози.
- Нарушена работа системы принудительной вентиляции. Вентиляция и кондиционирование не работает должным образом или работают с перебоями.
- Вы покупаете дом или квартиру и хотите убедиться, что они должным образом утеплены, отсутствуют грубые дефекты, короче не хотите, чтобы вас “кинули”.
- Перед ремонтом или реконструкцией здания, вам необходимо разобраться, что утеплять, менять, а что можно не трогать.
Измерение воздухопроницаемости поможет вам выявить причины всех этих проблем.
Воздухопроницаемость • Поиск утечек тепла • Замеры • Консультация
Как правило, проблемы с воздухопроницаемостью возникают в случае нарушения и дефектов дверей, окон, перекрытий и стен, например:
- щелей и неплотностей конструкций,
- некачественной кирпичной кладки,
- разрывов пароизоляции,
- дефектов монтажных швов окон и дверей.
Как показывает практика, повышенная воздухопроницаемость является причиной 50% потерь тепловой энергии в современных зданиях.
А часто наблюдаемое явление сухого воздуха в помещении зимой вызвано тем, что холодный внешний воздух, содержащий небольшое количество водяного пара, проникает в помещение через дефекты и щели.
После нагревания влажность воздуха в пощении становится ниже минимально допустимого уровня в 40%, а микроклимат в помещении становится очень не комфортным.
Влияние качества воздуха на здоровье человека
Качество этого воздуха во многом определяет самочувствие, здоровье и продолжительность жизни человека.
Вредные примеси в воздухе помещения появляются из двух источников – снаружи из атмосферы и непосредственно образующиеся в самом помещении. Наружные загрязнения – это выбросы автотранспорта и промышленных предприятий, пожары на торфяниках и т.д. Внутренние загрязнения – это газовые выделения от самих людей (углекислый газ, пары воды, запахи, табачный дым) и выделения из мебели, отделочных материалов и бытовой техники.
Вопреки ошибочному мнению, что надо максимально изолировать помещение от внешней среды, воздух внутри помещения всегда грязнее, чем снаружи. Максимально герметизируя окна и стены, люди просто начинают травить себя собственными испарениями. Современная герметичная квартира – это аналог полиэтиленового пакета, надетого на голову, только бо́льшего размера.
Уже давно в различных странах мира ученые и инженеры определили, сколько свежего воздуха требуется человеку для нормального самочувствия в замкнутом помещении, хотя дискуссии на эту тему продолжаются до сих пор. Связано это, в основном, с тем, что в холодном климате требуется приточный воздух подогревать, а это с каждым годом становится все дороже.
Нормы вентиляции в офисных помещениях
По большому счету, офис – производственное сооружение, с большим количеством находящихся в нем людей. Нормативно закреплено наличие 30-40 кубометров качественного воздуха на человека. Для определенного вида частей офиса закреплена различная величина. Для рабочей комнаты и кабинета она составляет 60 кубометров на человека, для приемной и переговорной – 40 кубометров, для совещательных залов – 30, вентиляционная норма для коридоров и холлов равна 11 метрам кубическим, для туалетов -75, а в помещениях для курения такая норма100.
Санитарные правила для офисов устанавливают процент влажности воздуха, в зависимости от температуры. При температуре 25 градусов влажность не может быть более 70 процентов, при 26 градусах – 65, а при 27 не более 60 процентов.
Почему правильный воздухообмен важен
Нормы воздухообмена придуманы не просто так. При грамотно организованной вентиляции в помещении приятно находиться. Не ощущается спертого воздуха. В помещении не сохраняются надолго неприятные запахи. А также микроклимат не создает предпосылок к появлению плесени.
Система вентиляции – важная составляющая в организации хорошего показателя воздухообмена. И создания оптимальной атмосферы в помещении.
Разновидности систем вентиляции
Сегодня выполняется два вида вентиляции в жилых помещениях. Они различаются по методике монтажа и организации. А также по результативности в разных условиях эксплуатации.
Однако функции обоих видов вентиляции идентичны:
Следующие виды вентиляционных систем используются в строительстве:
- естественная вентиляция. Выполняется она в виде воздуховодов. Через них осуществляется отток воздуха из помещения. А приток – через неплотности и щели в дверях и окнах. Действие естественной вентиляции начинается только при разнице температур воздуха между помещением и вне его. Она должна составлять 10-15°С;
- принудительная вентиляция. Она будет работать вне зависимости от любых внешних факторов. Представляет собой вентиляторного типа устройство. Оно устанавливается в толщу стены здания. И может работать и на приток, и на отток воздуха.
Принудительный тип вентиляции справляется с задачей воздухообмена эффективнее. Существуют разновидности таких устройств. Они могут различаться по объему обрабатываемого воздуха. Оснащаться системой подогрева воздуха, который поступает с улицы. Стоимость устройства зависит от его возможностей и функций.
Схематично прибор принудительной вентиляции представлен на картинке ниже:
Возможность сочетания разных видов вентиляции
Можно сочетать оба вида вентиляции в одном помещении. Такой подход позволит обеспечить нормальный воздухообмен в любое время года. Ведь в летний период естественная вентиляция уже не работает. Связано это с отсутствием разницы температуры воздуха внутри и снаружи помещения.
Особенностью работы принудительной вентиляции по требованиям СНиП является обязательное расположение радиаторов отопления строго под окнами. Объясняется это тем, что приток воздуха преимущественно осуществляется через щели в окнах.
Получив представление о понятии воздухообмена и нормах, можно организовать грамотную вентиляцию внутри жилого помещения. Это обеспечит оптимальный микроклимат в нем. И поможет ощущать себя комфортно в любое время года.
Примеры расчета кратности воздухообмена
Возьмем для примера помещение высотой 3,5 м и площадью 60 м², где работает 15 человек. Считаем, что воздух загрязняется только от роста концентрации углекислого газа из-за дыхания.
Сначала находим объем помещения: V = 3,5 м × 60 м² = 210 м³.
Учитываем, что 1 среднестатистический человек выделяет 22,6 л углекислого газа в час.
Получаем, что вредные выделения можно рассчитать формулой B = 22,6 × n, где n соответствует количеству людей в помещении.
B = 22,6 л/ч × 15 = 339 л/ч
Для помещений максимально допустимая концентрация углекислого газа равняется 1/1000, или же 0,1 %. Переведем это в 1 л/м³. В чистом воздухе углекислого газа есть около 0,035 %. Переводим в 0,35 л/м³.
Рассчитаем, сколько свежего воздуха понадобится для всех 15 человек:
Q = 339 л/ч : 1 л/м³ – 0,35 л/м³ = 339 л/ч : 0,65 л/м³ = 521,5 м³/ч. Кубические метры в данном случае перешли в числитель, а часы — напротив, в знаменатель.
Помимо расчета по вредным веществам, кратность воздухообмена имеет значение при регулировании количества влаги и тепла в помещении: соответствующие формулы показаны на этом изображении
Определяем кратность воздухообмена:
N = 521,5 м³/ч : 210 м³ = 2,48 раз в час. Выходит, при сменяемости воздуха на уровне 2,48 раз в час концентрация углекислого газа останется в пределах нормы.
Найдем теперь удельную кратность воздухозамещения на 1 человека и на 1 м². Объем помещения при этом должен быть не меньше 210 м³, а высота потолка — от 3,5 м.
521,5 м³/ч : 15 чел. = 34,7 м³/ч на 1 человека
521,5 м³/ч : 60 м² = 8,7 м³/ч на 1 м² площади
Вредные выделения (B) также рассчитывают через формулу:
B = a × b × V × n, где:
a — коэффициент инфильтрации;
b — концентрация углекислого газа, л/м³ за 1 час;
V — объем помещения, м³;
n — количество людей.
Содержание веществ можно измерять в граммах, а не в литрах — так будет лучше для безопасности.
Воздух жилых помещений по СанПиН в 2022 году
le=»padding-left: 20px; margin-left: 22px; border-left: 4px solid #c4a800;»>В разделе V СанПиН 1.2.3685-21, освещающим вопросы нормирования физических факторов, определены нормативы микроклимата в 2022 году для зон обитания (обслуживаемой зоны) общественных и жилых помещений. СанПиН дает определение, что же это такое. Под данным понятием понимается пространство, ограниченное полом и стенами в пределах 0,1-2 метра над уровнем пола, если помещение предназначено для передвижения и стояния, 1,5 метра – для людей, сидящих в помещении. Расстояние от стен, отопительных приборов и окон составляет не менее 0,5 метров.
Все показатели воздуха жилых помещений по СанПиН в 2022 году сгруппированы в таблице 5.27 СанПиН 1.2.3685-21 с разбивкой на холодный и теплый период года с указанием оптимальных и допустимых значений. Для холодного периода значения температуры колеблются в зависимости от назначения жилого помещения, для теплого – определены только для жилой комнаты. Так, оптимальными значениями для жилых комнат в летний период является диапазон от 22 до 25°С, а допустимым 20-28. Кроме температуры воздуха таблица содержит значения по результирующей температуре. Это комплексный показатель, сочетающий температуру воздуха и поверхностей помещения. Оптимальная результирующая температура воздуха по СанПиН в 2022 году для жилых комнат в теплый сезон – от 22 до 24°С, допустимая — от 18 до 27°С.
Не нормируются показатели по относительной влажности (как оптимальные, так и допустимые) в холодный период для:
- кухни;
- ванной и совмещенного санузла;
- кладовых;
- лестничной клетки и межквартирных коридоров;
- туалета.
Таблица 5.27. Оптимальные и допустимые нормы параметров микроклимата в обслуживаемой зоне (зоне обитания) помещений жилых зданий и общежитий.
Период года | Наименование помещения | Температура воздуха, °С | Результирующая температура, °С | Относительная влажность, % | Скорость движения воздуха, м/с | ||||
---|---|---|---|---|---|---|---|---|---|
опти-маль-ная | допус-тимая | опти-маль-ная | допус-тимая | опти-маль-ная | допус-тимая | опти-маль-ная, не более | допус-тимая, не более | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Холодный | Жилая комната | 20-22 | 18-24 | 19-20 | 17-23 | 45-30 | 60-30 | 0,15 | 0,2 |
Жилая комната в стационарных организациях социального обслуживания | 20-22 | 20-24 | 19-20 | 19-23 | 45-30 | 60-30 | 0,15 | 0,2 | |
В районах с температурой наиболее холодной пятидневки (обеспеченностью 0,92) минус 31°С и ниже: | |||||||||
— Жилая комната | 21-23 | 20-24 | 20-22 | 19-23 | 45-30 | 60-30 | 0,15 | 0,2 | |
— Жилая комната в стационарных организациях социального обслуживания | 21-23 | 22-24 | 20-22 | 21-23 | 45-30 | 60-30 | 0,15 | 0,2 | |
Кухня | 19-21 | 18-26 | 18-20 | 17-25 | не норми- руется (НН) | НН | 0,15 | 0,2 | |
Туалет | 19-21 | 18-26 | 18-20 | 17-25 | НН | НН | 0,15 | 0,2 | |
Ванная, совмещенный санузел | 24-26 | 18-26 | 23-27 | 17-26 | НН | НН | 0,15 | 0,2 | |
Помещения для отдыха и учебных занятий | 20-22 | 18-24 | 19-21 | 17-23 | 45-30 | 60-30 | 0,15 | 0,2 | |
Межквартирный коридор | 18-20 | 16-22 | 17-19 | 15-21 | 45-30 | 60-30 | НН | НН | |
Вестибюль, лестничная клетка | 16-18 | 14-20 | 15-17 | 13-19 | НН | НН | НН | НН | |
Кладовые | 16-18 | 12-22 | 15-17 | 11-21 | НН | НН | НН | НН | |
Теплый | Жилая комната | 22-25 | 20-28 | 22-24 | 18-27 | 60-30 | 65-30 | 0,2 | 0,3 |
Исходные данные для расчета воздухообмена
Цель расчета – определить, сколько чистого воздуха требуется подавать в каждое помещение и какое количество отработанного удалять из него. После этого выбирают способ организации воздухообмена и для холодного времени года рассчитывают тепловую мощность, которую нужно затратить для подогрева притока с улицы. Для начала нужно определить кратность обмена для каждой комнаты жилого дома.
Значения величины кратности для кабинетов и комнат различного назначения прописаны в СНиП 31–01-2003, для удобства они приведены в Таблице 1.
В СНиПе указаны расчетные значения расхода и кратности, но для топочных количество воздуха на горение необходимо уточнять по техническим характеристикам водогрейного котла.
Санитарные нормы вентиляции помещений – нормы СниП
При строительстве нужно учитывать массу различных факторов, проводить расчеты
Но какое бы помещение вы не строили, особое внимание следует уделить вентиляции
Правила воздухообмена или вентиляции четко прописаны в Своде правил СП 60.13330.2012 “СНиП 41-01-2003. Отопление, вентиляция и кондиционирование воздуха”. Именно этим сводом правил нужно руководствоваться при создании проекта любого здания и его строительстве.
Правильная система циркуляции воздуха позволит избавить от сырости и духоты. Помимо этого воздухообмен напрямую связан с экологией и энергоснабжением.
Именно поэтому выбором типа воздухообмена лучше заняться еще на этапе проектирования.
Расчет по площади помещения
Наиболее простой метод расчета. Он производится на основании норм, которые регламентируют подачу свежего воздуха для жилых помещений в размере 3 м3/час на 1 м2 площади пространства. Т.е. за основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.
Количество людей, которые постоянно проживают в доме, при этом не учитывается.
Воздух поступает через спальню и гостиную, а удаляется из кухни и санузла
Рассмотрим расчеты на примере.
Есть дом площадью 146 м2.
Считаем воздухообмен по формуле: ∑ L= ∑ Lпр= ∑ Lвыт =∑ Sпомещения х 3.
∑ Lвыт 3=146 х 3=438м3/час.
Нормы вентиляции офиса
Рекомендуется скорость обмена (согласно ГОСТу 30494-2011) до 1/10 метра в секунду вне зависимости от времени года. Несложно будет подсчитать, что для поддержания объёма обмена воздуха на необходимой скорости нельзя обойтись форточным проветриванием, ведь нужна очень качественная система ввода и вывода воздуха, работать будет которая почти всегда. Помимо этого, к офисной вентиляции (так как на неё идёт большая нагрузка) предъявляют особенные требования.
Схема вентиляции воздуха в офисе
В СанПине 2.2.4 представляют нормативы к вентиляционной системе в офисе. Характеристики воздушного микроклимата описаны ниже:
Если период летний, то оптимальной считается температура от 19 до 21 градуса по Цельсию. Влажность же должна составлять 30-45%, но не более 60. Движение воздушного потока должно быть равным 0,2 — 0,3 м/c.
Если период зимний, то оптимальной температурой считается от 23 до 25 градусов по Цельсию. Влажность не должна превышать 60%, однако её идеальное значение примерно равно 50. Движение воздушного потока должно быть равным 0,3-0,5 м/c.
Также СанПин рекомендует следующий уровень влажности в зависимости от температуры:
- 40-60% при температуре 22-24°С
- 70% при температуре 25°С
- 65% при температуре 26°С
- 60% при температуре 27°С
Норма воздуха на человека в офисе
Рассчитать нужный воздухообмен — задача непростая. Несмотря на то, что проблема известна достаточно долго, отечественные и западные расчёты об оптимальном значении воздухообмена всё ещё противоречивы и иногда не до конца обосновываются.
Далее представлена информация по нормам расхода воздуха, нужная человеку, в помещении на одного сотрудника:
- Если объём до 20 метров в кубе на человека, то объёмный расход подаваемого в помещение воздуха составит не менее 20 м^3 на человека в час
- Если объём составит 20-40 метров в кубе на человека, то норма будет уже минимум 30
- Если объём помещения на человека более 40 метров, то можно обойтись естественной вентиляцией.
- Если в помещении отсутствуют окна, то нормой уже будет минимум 60 м^3 на человека в час.
Правильный воздухообмен необычайно важен. Он регламентируется множеством документов, соблюдение которых — обязательное условие продуктивной работы в помещении.
Воздух производственных помещений по СанПиН в 2022 году
В рамках действия «регуляторной гильотины» были отменены ряд санитарно-гигиенических нормативных актов, использовавшихся для контроля параметров воздуха производственных помещений. Взамен этих документов применяется СанПиН 1.2.3685-21. В таблице 2.1. приводится полный перечень контролируемых показателей по химическим веществам в воздухе, нормируемым в производственных помещениях. Здесь же определены ПДК, указывается действие на организм человека, класс опасности. Всего в списке 2484 вещества. Еще для 601 вещества определены ориентировочные безопасные уровни воздействия.
В воздухе рабочей зоны по СанПиН 2022 года нормируются показатели по микроорганизмам-продуцентам и бактериальным препаратам. Определен перечень по специфическим отравляющим веществам на разных типах поверхности.
В разделе V СанПиН 1.2.3685-21 дается характеристика нормативов физических факторов, очерчен круг показателей, характеризующих микроклимат в производственной сфере. К ним относятся:
- температура поверхностей оборудования и устройств, а также воздуха;
- тепловое облучение и его интенсивность;
- скорость движения воздушного потока и его относительная влажность.
В таблице 5.2. СанПиН 1.2.3685-21 приводятся данные по всем параметрам микроклимата в закрытых помещениях с ранжированием по периодам года и категории работ. Также нормируются показатели по вибрации, уровням инфра- и ультразвука, электрических и магнитных полей.
Таблица 5.2. Допустимые величины параметров микроклимата на рабочих местах в помещениях.
Период года |
Категория работ по уровню | Температура воздуха, °С | Темпера- тура поверх- | Относитель- ная влажность |
Скорость движения воздуха, м/с |
||
---|---|---|---|---|---|---|---|
энерготрат, Вт | диапазон ниже оптималь- ных величин | диапазон выше оптималь- ных величин | ностей, °С | воздуха, % | для диапазона температур воздуха ниже оптималь- ных величин, не более | для диапазона температур воздуха выше оптималь- ных величин, не более | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Холодный | Iа (до 139) | 20,0-21,9 | 24,1-25,0 | 19,0-26,0 | 15-75 | 0,1 | 0,1 |
Iб (140-174) | 19,0-20,9 | 23,1-24,0 | 18,0-25,0 | 15-75 | 0,1 | 0,2 | |
IIа (175-232) | 17,0-18,9 | 21,1-23,0 | 16,0-24,0 | 15-75 | 0,1 | 0,3 | |
IIб (233-290) | 15,0-16,9 | 19,1-22,0 | 14,0-23,0 | 15-75 | 0,2 | 0,4 | |
III (более 290) | 13,0-15,9 | 18,1-21,0 | 12,0-22,0 | 15-75 | 0,2 | 0,4 | |
Теплый | Iа (до 139) | 21,0-22,9 | 25,1-28,0 | 20,0-29,0 | 15-75 | 0,1 | 0,2 |
Iб (140-174) | 20,0-21,9 | 24,1-28,0 | 19,0-29,0 | 15-75 | 0,1 | 0,3 | |
IIа (175-232) | 18,0-19,9 | 22,1-27,0 | 17,0-28,0 | 15-75 | 0,1 | 0,4 | |
IIб (233-290) | 16,0-18,9 | 21,1-27,0 | 15,0-28,0 | 15-75 | 0,2 | 0,5 | |
III (более 290) | 15,0-17,9 | 20,1-26,0 | 14,0-27,0 | 15-75 | 0,2 | 0,5 |
11.3 Примечания к примеру расчета
11.3.1 При наличии общего зонта над линией кухонного оборудования кухонные выделения и расход воздуха через зонт следует определять отдельно по каждой единице по формуле (4), затем их суммировать.
11.3.2 При заданном объеме перетока воздуха из зала в горячий цех следует проверять скорость в раздаточном проеме, которая должна быть около 0,2-0,3 м/с.
11.3.3 При выборе расчетной температуры воздуха в летний период tн следует принимать во внимание, что в условиях плотной городской застройки температура воздуха у воздухозабора приточной вентиляционной установки может быть на 5 °С-10 °С выше tн
Инструкция: вычисления по зданиям промышленного назначения
Расчет воздуховодов – подбор прямоугольных сечений.
В составе этого вида зданий находится множество комнат и кабинетов. Те из них, в которых вентиляция должна обеспечить комфортный труд людей низкой категории тяжести работ (администрация, бухгалтерия и так далее), рассчитываются по алгоритму, приведенному выше. В остальных помещениях, в которых проходят технологические и вспомогательные процессы, необходимо рассчитывать приточно-вытяжную вентиляцию в соответствии со СНиП 41-01 по видам выделяющихся в них вредных или горючих веществ, излишкам тепла.
Прежде чем приступить к расчету общеобменной вентиляции, нужно выяснить, сколько воздуха из пространства комнаты уходит из-за работы местных отсосов. К ним относятся вытяжные зонты и лабораторные шкафы, различные всасывающие панели и укрытия. Применяются они с целью отобрать вредные вещества прямо от источника их выделения, не допуская распространения по всему объему помещения. Зачастую местные отсосы идут в комплекте с технологическим оборудованием, поэтому их производительность заранее известна. Другие требуется рассчитать и установить в зависимости от размеров и интенсивности источника выброса, порядок этих расчетов приведен в технической литературе. Для укрупненного определения производительности местного отсоса можно применить знакомую формулу: Lотс=3600ϑ*Sотс, где:
- ϑ – скорость воздушного потока в рабочем проеме вытяжного зонта или шкафа (принимается 1 м/с);
- Lотс – расход воздуха через этот рабочий проем (м3/ч);
- Sотс – площадь проема (м2).
Полученная величина будет участвовать в дальнейшем просчете необходимого количества приточного воздуха. Но сначала нужно выяснить, сколько необходимо подать воздуха с улицы для различных условий. Суть операции в том, чтобы определить виды и количество выделяющихся в пространство помещения вредных для здоровья человека или горючих и взрывоопасных веществ. Вычисления производить на основании этих данных. Если источников выделений несколько, то считать придется по каждому из них, а для вентиляции принять наибольший результат.
Таблица предельно допустимых концентраций вредных веществ.
Зная, сколько выделяется каждого вещества в помещение за промежуток времени (мг/ч), не трудно определить его концентрацию (мг/м3). Условно считается, что вещество распределяется на весь объем комнаты. После этого находят значение предельно допустимой концентрации (ПДК) этого вещества в соответствующей нормативной документации. Если концентрация в помещении превышает ПДК, нужно подать определенное количество свежего воздуха, а загрязненный – удалить. Величину притока считают по формуле: L=Mвв/yпом-yп, где:
- L – необходимое количество свежего притока (м3/ч);
- Mвв – значение массы выделяющегося вредного вещества за 1 час (мг/ч);
- yпом – расчетная величина удельной концентрации вещества в объеме комнаты (мг/м3);
- yп – его удельная концентрация в поступающих с улицы воздушных массах (мг/м3).
От полученного значения L нужно отнять величину Lотс, полученную ранее. Результатом будет расход воздушных масс, которые необходимо удалить из помещения с помощью общеобменной вытяжной вентиляции.
Удаление избыточного тепла
Формулы определения необходимого воздухообмена
В результате некоторых технологических процессов в пространство помещения попадает излишнее количество тепла, его нужно нейтрализовать с помощью подачи приточного воздуха. Тогда расчет ведут по формуле: L=Lотс+[3.6Q-С Lотс (tмо-tп) / c (tпом-tп)].
Здесь:
- Lотс – полученное ранее значение количества вытяжки, что выполняют местные отсосы, находящиеся в рабочей зоне (последняя – это пространство высотой в 2 м от пола) (м3/ч);
- Q – величина теплоты, которая выделяется при технологическом процессе (Вт);
- tмо – температура воздуха, который удаляется местными вытяжными устройствами (° С);
- tпом – температура воздушных масс, которые удаляются из пространства над рабочей зоной с помощью общеобменной вытяжной вентиляции (° С);
- tп – температура свежего воздуха с улицы (° С);
- С – удельная теплоемкость воздуха, равна 1,2 кДж (м3 * °С).
Выбор приточной установки
Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел ).
Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.
Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².
Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.
Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.
После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:
- Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
- «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
- Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
- Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.
Расчет по кратностям
Кратность воздухообмена — это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 -кранный воздухообмен – половину объема помещения.
В нормативном документе ДБН В.2.2-15-2005 «Жилые здания» есть таблица с приведенными кратностями по помещениям. Рассмотрим на примере, как производится рассчет по данной методике.