Рекуперация тепла в системах вентиляции: принцип работы, разновидности, особенности

Содержание
  1. Система двухфазного охлаждения на базе Novec
  2. Преимущества двухфазной системы охлаждения на базе Novec:
  3. Недостатки двухфазной системы охлаждения на базе Novec:
  4. Теплообменники пластинчатого типа
  5. Особенности
  6. Возможности установки
  7. Общие сведения об утилизации теплоты
  8. Подробнее об исходных данных для расчета
  9. Есть готовый расчет теплообменника?
  10. Выбор типа рекуператора
  11. Элементы пластинчатого рекуператора
  12. Двухконтурная система холодоснабжения с функцией «свободного охлаждения» (Freecooling)
  13. Спиральный теплообменник
  14. Как появился Novec
  15. Управление рекуператором
  16. Тепловые трубки
  17. Обслуживание устройства
  18. Пример расчета утилизации теплоты с промежуточным теплоносителем
  19. Основные классы чиллеров
  20. Устройство абсорбционного агрегата
  21. Конструкция парокомпрессионных установок
  22. Специфика парокомпрессионного чиллера
  23. Расчет теплообменника пластинчатого
  24. Технические характеристики, на которые следует обратить внимание при выборе
  25. Рекуператор с водяной циркуляцией
  26. Характеристика
  27. Конструкция
  28. Заключение

Система двухфазного охлаждения на базе Novec

В двухфазной системе охлаждения используют ёмкость, в которой размещены платы или другое оборудование. Диэлектрической жидкостью выступает, например, Novec 7100 с температурой кипения 61 градус Цельсия. В процессе работы оборудование выделяет тепло, жидкость нагревается, закипает и начинает испаряться. При этом Novec забирает тепло от наиболее горячих элементов и переносит к конденсаторам, в которых циркулирует охлаждающая жидкость (вода). Она является промежуточным теплоносителем, при помощи которого тепло, выделяемое при конденсации хладагента, отводится в окружающую среду.

Для испарения 1 г Novec необходимо 120 Дж энергии. Видеокарта мощностью 200 Вт за 1 секунду испаряет около 2 г жидкости. За минуту произойдёт испарение 120 г. Таким образом, эффективность теплоотвода при кипении очень высока и позволяет отказаться от радиаторных пластин. Для двухфазного охлаждения обычно применяют Novec 7000, 7100 и 7200.

При испарении происходит переход Novec из жидкого состояния в газообразное. Поэтому процесс называется двухфазным. Если ёмкость оставить открытой, жидкость будет испаряться и её постоянно потребуется доливать. В закрытой ёмкости пар поднимается к крышке, где устанавливают конденсатор (несколько труб или змеевик ) с охлаждающей жидкостью (можно даже с холодной водой), то есть тот же теплообменник. Газ конденсируется, появляются капли и струями стекают обратно в ёмкость. При этом не нужны насосы и постоянный долив жидкости. Так формируется один закрытый рабочий контур.

Разумеется, жидкость в конденсаторе тоже нагревается. И мощность нагрева прямо пропорциональна выделяемой видеокартами мощности, необходимой для кипения жидкости. Поэтому постоянно требуется охлаждение жидкости. Для этого формируют второй закрытый контур. Вода, которая бежит по трубам, попадает в воздушный теплообменник с вентилятором, вынесенными на улицу. Он отводит тепло и вода вновь пригодна для охлаждения.

Для двухфазной системы намеренно используют жидкость-диэлектрик с низкой точкой кипения. Это сделано для того, чтобы точка кипения жидкости не превышала рабочий температурный режим элементов, а теплообмен происходил интенсивнее. При этом на видеокарты, например, часто устанавливают медные пластины. С них снимают теплопроводящие прокладки и удаляют термопасту. Затем устанавливают медную пластину по толщине зазора. Её подбирают по примерной толщине удаленной термопасты или прокладки. Теплопроводность меди, напомним, одна из самых высоких среди других элементов. То есть доработка оборудования перед погружением происходит и при охлаждении в двухфазке.

Преимущества двухфазной системы охлаждения на базе Novec:

  • безопасная для электроники и негорючая жидкость (используется для тушения пожаров);

  • эффективное охлаждение;

  • экономия на системах охлаждения погружённого оборудования;

  • высокая плотность размещения оборудования;

  • отсутствие вредных выбросов.

Недостатки двухфазной системы охлаждения на базе Novec:

  • высокая стоимость решения;

  • необходима герметичная ёмкость;

  • постепенное нарастание давления в закрытых ёмкостях, которое нужно компенсировать;

  • сложность реализации системы для неопытных конструкторов;

  • экономически оправданно только для оборудования с высокой плотностью размещения;

  • необходимость доработки оборудования перед погружением.

Теплообменники пластинчатого типа

Самые простые конструкции для систем вентиляции. Теплообменник выполнен в виде камеры, разделенной на отдельные каналы, расположенные параллельно относительно друг друга. Между ними находится тонкая пластинчатая перегородка, которая имеет высокие теплопроводные свойства.

Принцип действия основан на обмене теплом воздушных потоков, то есть отработанный воздух, который удаляется из помещения и отдает свое тепло приточному воздуху, который поступает внутрь дома уже теплым, благодаря такому обмену.

К преимуществам такой технологии можно отнести:

Теплообмен с помощью рекуператора

  • простую настройку устройства;
  • полное отсутствие каких-либо движущихся деталей;
  • высокую эффективность действия.

Ну, и одним наиболее существенным недостатком в работе такого рекуператора является образование конденсата на самой пластине. Обычно такие теплообменники требуется дополнительно монтировать специальными каплеуловителями. Это необходимый параметр, поскольку в зимнее время конденсат может замерзнуть и остановить устройство. Именно поэтому в некоторых устройствах данного типа есть встроенные системы размораживания.

Особенности

Роторный рекуператор имеет в своей конструкции вращающийся с заданной скоростью теплообменник.

К плюсам роторных моделей рекуператоров можно отнести следующие моменты:

  • очень высокий коэффициент полезного действия (КПД 70-90%), особенно в зимнее время;
  • уменьшение времени работы кондиционера в летнее время, за счет эффективного охлаждения помещения;
  • процесс рекуперации полностью автоматизирован;
  • нет необходимости беспокоиться о конденсате, так как отсутствуют циклы оттаивания.

Однако, как и у любых технически приспособлений, у рекуператоров роторного типа есть и свои минусы, среди них:

  • высокая, по сравнению с другими моделями, стоимость;
  • есть некоторый шум при работе;
  • может происходить смешивание холодного и горячего воздуха;
  • некоторые модели имеют очень большие габариты, что делает невозможным их использование в маленьких помещениях;
  • устройство требует частого обслуживания, так как состоит из множества подвижных элементов, которые иногда могут выходить из строя.

Существует несколько видов роторных рекуператоров.

Сорбционные. В этих моделях в качестве сорбента используется силикагель. Благодаря этому материалу барабан роторного рекуператора отлично впитывает влагу, не позволяя конденсату образовываться и нарушать работу устройства.

Эпоксидные. Такой тип покрытия внутренней части рекуператора позволяет защитить алюминиевый барабан от агрессивного воздействия некоторых химических соединений в воздухе. Рекуператор с эпоксидным покрытием отлично противостоит влиянию морской соли, хлора и химических реагентов в условии крупных производств.

Энтальпийные. В этом типе приборов внутренний барабан покрыт материалом, который поглощает не только влагу, тем самым не давая образовываться конденсату, но и тепловую энергию.

Конденсационные. На таких моделях специальное покрытие на барабане отсутствует. Они не способны отводить конденсат, отсюда и их название.

Антибактериальные. В этом случае на внутреннюю поверхность рекуператора наносится специальная пропитка с антимикробным действием. Такое устройство способно очистить и защитить воздух в помещении от 600 видов известных патогенов.

Если в помещении высокие показатели влажности, то оправданно устанавливают гигроскопические роторные модели. Другие виды предназначены в большей степени для обеспечения эффективной вентиляции помещения на вредных производствах.

Возможности установки

  • Можно подсоединить несколько притоков и одну вытяжку и наоборот.
  • Расстояние между притоком и вытяжкой может достигать 800 м.
  • Систему рекуперации можно регулировать автоматически за счёт изменения скорости циркуляции теплоносителя.
  • Гликолевый раствор не замерзает, т. е. при минусовых температурах разморозка системы не нужна.
  • Так как используется промежуточный теплоноситель, исключено попадание в приток воздуха из вытяжки.

При двухконтурной схеме гликолевого рекуператора количество удаляемого и приточного воздуха должно совпадать, хотя и допускаются отклонения до 40%, ухудшающие показатель КПД.

Общие сведения об утилизации теплоты

Рис. 1. Секции перекрестно-точного теплообменника:
а – ванна и сепаратор на выходе из вытяжной секции;
б – ванна и сепаратор на выходе из вытяжной секции;
Ванна и сепаратор на выходе из приточной секции (применяется летом во время охлаждения приточного воздуха в перекрестно-точном теплообменнике);
в – ванна и сепаратор на выходе из вытяжной секции. Фильтры первой ступени класса EU3 на входе в приточную и вытяжную секции. Возможен монтаж регулирующего воздушного клапана и эластичных вставок;
г – ванна и сепаратор на выходе из вытяжной секции. Ванна и сепаратор на выходе из приточной секции (необходимы летом при охлаждении приточного воздуха в перекрестно-точном теплообменнике). Фильтры первой ступени класса EU3 на выходе в приточную и вытяжную секции. Возможен монтаж регулирующего воздушного клапана и эластичных вставок

В последнее время большую актуальность приобрела проблема экономии теплоты, затрачиваемой на нагрев приточного воздуха в системах вентиляции. Поэтому появилась необходимость использовать тепловые вторичные ресурсы, такие как:

  • теплота воздуха, удаляемого системами вытяжной общеобменной вентиляции и вытяжных систем местных отсосов, когда рециркуляция воздуха недопустима;
  • тепло и холод, которые выделяются при работе технологических установок, которые пригодны для систем вентиляции и кондиционирования.

Для использования теплоты удаляемого из помещений воздуха применяются теплоутилизаторы, которые подразделяются на три типа:

  • перекрестно-точные рекуперативные теплообменники;
  • вращающиеся регенеративные теплообменники (роторные);
  • система с промежуточным теплоносителем, состоящая из двух теплообменников.

Тип утилизатора определяет и тип соответствующей секции центрального кондиционера.

Остановимся подробнее на этих трех видах теплоутилизаторов.

Подробнее об исходных данных для расчета

  1. Температура на входе и выходе обоих контуров.Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник.
  2. Максимально допустимая рабочая температура, давление среды.Чем хуже параметры, тем ниже цена. Параметры и стоимость оборудования определяют данные проекта.
  3. Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту. Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913.
  4. Тепловая мощность (Р, кВт).Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше): P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 — t2).
  5. Дополнительные характеристики.
    • для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
    • средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура) и ΔT2 = T2 (вход холодного контура) — T3 (выход холодного контура);
    • уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.

Подбор и расчет стоимости теплообменника удобным для вас способом

Есть готовый расчет теплообменника?

Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника

Откуда взять расчетные данные для ПТО?

Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).

Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.

Выбор типа рекуператора

Эффективный выбор рекуператоров осуществляется с учетом следующих критериев:

  • Желательно соблюдать возможность обустройства приточного и вытяжного воздуховода в одном корпусе.
  • Типоразмеры рекуператора.
  • Необходимая эффективность.
  • Минимальные тепловые потери и отсутствие перетоков.
  • Стоимость.

Ранее самыми востребованными моделями были рекуператоры с промежуточным теплоносителем, но в наши дни их практически повсеместно заменили на роторные аппараты. Пластинчатые рекуператоры хорошо зарекомендовали себя в системах для частных домов и офисов. Если же требуется обеспечить систему без перетоков воздуха, то избираются рекуператоры с фреоновыми змеевиками.

Мы полностью ответили на вопрос – что такое рекуператор. Предлагаем вам использовать данные нашей статьи, как руководство для выбора изделия под собственную вентиляционную систему. Те сведения, которые мы представили, позволят сделать максимально эффективный выбор, а также разобраться в конструкции того или иного рекуператора.

Элементы пластинчатого рекуператора

Основные части рекуперационной системы — вентилятор и основной блок (кассета) с пластинами. Другие элементы:

  1. Система отвода конденсата — конденсационная ванна. Устройство необходимо для удаления влаги с пластин, так как она неизбежно приведет к попаданию жидкости в воздушный канал, в котором может образоваться наледь. При большом скоплении жидкости работу приточно-вытяжной системы блокирует водяной затвор конденсатосборника.
  2. Перепускной клапан. Его задача — регулирование интенсивности обоих воздушных потоков. В отличие от роторного рекуператора, в этом агрегате и клапане абсолютно отсутствуют подвижные элементы.

Теперь необходимо остановиться на материалах, идущих на производство теплообменников пластинчатого рекуператора. Идеалов нет: все они имеют сильные и слабые стороны.

  1. Алюминий или оцинкованная сталь. Модели с этими теплообменниками неизменно пользуются успехом из-за их адекватной цены. Если говорить о недостатках, то главный — невысокий КПД, потому что зимой такие приборы приходится постоянно оттаивать.
  2. Пластик. Ему совершенно неведомы проблемы неидеального «союза» воды и металла, поэтому с коэффициентом полезного действия у таких рекуператоров все в порядке. Но непогрешимость их — причина гораздо большей стоимости.
  3. Специальная бумага. Эффективность этого оборудования достаточно высока, однако и здесь присутствуют ложки дегтя. Это невозможность их использования в помещениях, где уровень влажности очень высок: в бассейнах, ванных комнатах и т. д. Двойные бумажные кассеты хоть и более действенны, но влаги они боятся точно так же. Впитывание запахов — еще один недостаток материала.

Используют в производстве агрегатов также латунь и чугун. Однако чаще всего пластины делают из нержавеющей стали определенной марки — AISI 316, в состав ее добавляют молибден и никель. Эти компоненты значительно повышают коррозионное сопротивление в агрессивных средах. Чтобы гарантировать большую эффективность приборов, внутрь устанавливают дополнительный теплообменник. Такое усовершенствование позволяет повысить КПД до 85%.

Двухконтурная система холодоснабжения с функцией «свободного охлаждения» (Freecooling)

Двухконтурная система холодоснабжения с функцией «свободного охлаждения» (Freecooling)

В целях экономии электроэнергии, сокращения количества времени
работы компрессоров холодильной машины за все время эксплуатации
системы холодоснабжения, возможна доработка двухконтурной системы
холодоснабжения до системы
с функцией «свободного охлаждения». Охлаждение теплоносителя
в холодный период года осуществляется наружным воздухом с помощью
драйкулера без использования холодильной машины.

Драйкулер включается в контур испарителя параллельно с основной
холодильной машиной и в летний период не используется. На зимний
период холодильная машина отключается от системы холодоснабжения,
теплоноситель охлаждается только с помощью драйкулера.

Трехходовой клапан, показанный на схеме, предназначен как для
регулирования температуры теплоносителя в процессе работы в режиме
«свободного охлаждения», так и для защиты теплообменника
от замерзания при пусках системы в зимний период.

Спиральный теплообменник

Спиральные теплообменники состоят из двух спиральных каналов прямоугольного сечения, образованных металлическими листами (рисунок 2). Внутренние концы спиралей соединены перегородкой. С торцов каналы закрыты крышками и уплотнены прокладками. У наружных концов каналов имеются патрубки для входа и выхода теплоносителей, два других патрубка приварены к плоским боковым крышкам.

Такие теплообменники используются для теплообмена между жидкостями и газами. Эти теплообменники не забиваются твердыми частицами, взвешенными в теплоносителях, поэтому они применяются для теплообмена между жидкостями со взвешенными частицами, например для охлаждения бражки на спиртоперегонных заводах.

1 — крышка; 2 — перегородка; 3, 4 — металлические листыРисунок 2 — Спиральный теплообменник

Спиральные теплообменники компактны, позволяют проводить процесс теплопередачи при высоких скоростях теплоносителей с высокими коэффициентами теплопередачи; гидравлическое сопротивление спиральных теплообменников ниже сопротивления многоходовых аппаратов при тех же скоростях теплоносителей.

Недостатком спиральных теплообменников является сложность изготовления, ремонта и чистки.

Как появился Novec

Первоначально для охлаждения трансформаторов использовали минеральное масло. В 50-ые гг. компания 3M впервые изготовила фторсодержащий хладагент для военной авионики. Его назвали Fluorinert. В 1996 году появился новый тип жидкости под маркой Novec, в которой не было озоноразрушающих веществ.

Жидкость первого поколения относилась к перфторуглеродам. Её свойства:

  • прозрачная;

  • без цвета и запаха;

  • негорючая;

  • отличные диэлектрические свойства;

  • совместимость со многими материалами;

  • высокие точки кипения.

Главным недостатком Fluorinert было то, что испарения жидкости долго оставались в атмосфере и косвенно способствовали глобальному потеплению. Поэтому их использовали в тех установках, где можно было обеспечить герметичность и минимизацию выбросов жидкости в окружающую среду

Особое внимание уделялось тому, чтобы жидкость не попадала на кожу и в глаза. В результате многолетней эксплуатации в суперкомпьютерах Cray-2 выяснилось, что она расщеплялась и выделяла очень токсичный перфторизобутан

В ЦОДах при длительной эксплуатации появлялись проблемы с блоками питания, проводами, конденсаторами и пр.

Большую популярность жидкости Novec имеют на Западе. Во-первых, бренд хорошо известен и зарекомендовал себя как безопасное средство тушения при возгораниях электроники. Во-вторых, 3M позиционировал жидкость как доработанную для майнеров. В-третьих, майнеры США и Западной Европы готовы вкладываться в майнинг с долгосрочным «прицелом»

И, что немаловажно, они готовы инвестировать солидные средства в систему охлаждения. На просторах СНГ иммерсионное охлаждение больше связано с экспериментами и реализацией штучных проектов, причём жидкость якобы должна быть дешёвой и столь же безопасной как Novec

Но так не бывает.

С применением Novec появилась возможность создавать двухфазные системы иммерсионного охлаждения (2 PIC) с полуоткрытыми контейнерами.

Управление рекуператором

Роторный механизм редко управляется отдельно от основной приточно-вентиляционной системы. В новейших конструкциях применяется возможность электронного управления устройством через контроллерный пульт. В автоматическом режиме владелец может задавать такие параметры, как скорость вращения, процентное соотношение между объемами впуска и выпуска воздуха, степень очистки, временные рабочие интервалы и т. д. Параметры работы механизма отслеживаются с помощью датчиков, которые, в частности, фиксируют пропускную способность оборудования. Также приточная установка с роторным рекуператором может настраиваться на специальные режимы эксплуатации. Одним из современных режимов такого типа является работа в условиях поддержания постоянного давления воздушной среды. Данная программа позволяет исключить риск перегрузки электропривода с последующим перегревом.

Тепловые трубки

Стоит выделить и еще один тип рекуператоров. Рекуперация тепла в доме с использованием тепловых трубок достаточно эффективна. Такие устройства представляют собой запаянные трубки, изготовленные из металла, который обладает высокими тепло проводимыми свойствами. Внутри такой трубки находится жидкость, которая имеет очень низкую температуру кипения (обычно здесь используют фреон).

Такой теплообменник всегда устанавливается в вертикальном положении, причем один из его концов расположен в канале вытяжки, а другой в приточном канале.

Принцип действия прост. Вытягиваемый теплый воздух, омывая трубу, передает тепло фреону, который закипая, перемещается вверх, с большим количеством тепла. А приточный воздух, омывающий верх трубки забирает данное тепло с собой.

К достоинствам можно отнести высокую эффективность, бесшумность работы и высокий коэффициент полезного действия. Так что сегодня можно значительно сэкономить на обогреве дома, частично возвращая его обратно.

Обслуживание устройства

Поверхности ротора и самого корпуса требуют регулярной очистки. Пластины очищаются и при необходимости дополнительно обрабатываются антикоррозийными составами. Также следует регулярно проверять направленность вращения ротора, а в приводной системе – качество натяжения ремня

Поскольку рекуператор работает в тесной связке с другими функциональными компонентами вентиляции, то важно проверять и их состояние тоже. В частности, ревизии подвергается фильтр, воздуховодные каналы, пылеуловители, клапаны с датчиками и т

д. Если есть возможность, то роторный рекуператор будет не лишним изъять из места установки и полностью проверить на герметичность. Дело в том, что при наличии даже незначительных зазоров резко ухудшается качество поступающего воздуха.

Пример расчета утилизации теплоты с промежуточным теплоносителем

Рис. 4

Исходные данные:

  • место расположения объекта: г. Москва;
  • расчетные параметры наружного воздуха в холодный период года:

t(Н) = tнБ, º С; JнБ, кДж/кг;

назначение объекта — бассейн.

Параметры воздуха:

удаляемого (вытяжного):

Gу, кг/ч; t (У), ºС; J (У), кДж/кг; φ (У), %

 приточного:

Gп, кг/ч; t (П), ºС; J (П), кДж/кг.

Решение.
1. На J-d-диаграмме наносим точку У с параметрами удаляемого воздуха (см. рис. 4) и точку f, параметры которой принимаются

t (f) = 2 ºС; φ (f) = 100 %

с учетом необмерзания теплообменника.

2. Процесс утилизации теплоты пойдет по прямой, соединяющей эти две точки, до относительной влажности φ (У1) точки У1.

Обязательное условие утилизации теплоты:
φ (У1) = 88 % при φ (У) от 30 до 40 %;
φ (У1) = 92 % при φ (У) от 50 до 70 %,
Наш случай φ (У1) = 65 %.
φ (У1) = 98 % при φ (У) более 70 %.
Таким образом, точка У1 — точка утилизации теплоты — имеет параметры:
t (У1), ºС; J (У1), кДж/кг; φ (У1), %.

Принципиальная схема гидравлической обвязки утилизации теплоты с промежуточным теплоносителем
Рис. 5. Условные обозначения:
1 – насос циркуляционный; 5 – клапан шаровой запорный; 2 – клапан трехходовой с электроприводом; 6 – мембранный расширительный бак; 3 – балансировочный клапан; 7 – термометр; 4 – фильтр жидкостный сетчатый; 8 – монометр.

3. Для дальнейших расчетов на J-d-диаграмме строим из точки f линию условно сухого режима с постоянным влагосодержанием, т. е. d = const.

4. Проводим линии постоянных теплосодержаний — энтальпий J = const из точек У и У1 до пересечения с линией постоянного влагосодержания d = const, проведенной из точки f.

Полученные точки У’ и У1’ имеют параметры:

  • точка У’ t (У’), ºС; J (У’), кДж/кг;
  • точка У1’ t (У1’), ºС; J (У1), кДж/кг.

5.Количество утилизированной теплоты составит:
Qу = Gу [J (У’) — J (У1’)] = C ∙ Gу [t (У’) — t (У1’)], кДж/кг.

Заметим, что определить количество утилизированной теплоты можно без дополнительных точек У’ и У1’ по формуле:
Qу = Gу [J (У) — J (У1)], кДж/кг.

О том, для чего вводятся точки У’ и У1’, можно узнать из полной версии данного курса.

6. Находим температуру приточного воздуха после теплоотдающего теплообменника:

7. Определяем количество антифриза, циркулирующего в системе:

где Саф — удельная теплоемкость антифриза, кДж/кг∙ ºС;
Δ tаф — разность температуры подогретого антифриза и температуры охлажденного антифриза.
Рекомендуется принимать Δtаф = 6 °С.

8. Во избежание обмерзания теплообменников принимаем среднюю температуру антифриза Δtср.аф. = +1°С, тогда:

температура подогретого антифриза составит:

температура охлажденного антифриза:

Для нашего случая расчет возможно закончить.

Публикуемые материалы являются лишь небольшими фрагментами программы ДПО, обучение по которой можно пройти в Учебно-консультационном центре «УНИВЕРСИТЕТ КЛИМАТА». Узнать подробности и записаться на обучение можно на сайте центра www.hvac-school.ru или по телефону (495) 225–22–42.

Основные классы чиллеров

Условное разделение чиллеров на классы происходит в зависимости от типа холодильного цикла. По этому признаку все чиллеры можно условно отнести к двум классам — абсорбционным и парокомпрессорным.

Устройство абсорбционного агрегата

Абсорбционный чиллер или АБХМ для работы использует бинарный раствор с присутствующими в нем водой и бромидом лития — абсорбер. Принцип функционирования — поглощение хладагентом тепла в фазе преобразования пара в жидкое состояние.

Такие агрегаты используют тепло‚ выделяющееся при работе промышленного оборудования. При этом абсорбирующий поглотитель с температурой кипения значительно превышающей соответствующий параметр хладагента‚ хорошо растворяет последний.

Схема функционирования чиллера этого класса следующая:

  1. Тепло от внешнего источника подводят к генератору, где оно разогревает смесь бромида лития и воды. При кипении рабочей смеси хладагент (вода) полностью испаряется.
  2. Пар переносится в конденсатор и становится жидкостью.
  3. Хладагент в жидком виде попадает в дроссель. Здесь он охлаждается‚ а давление падает.
  4. Жидкость поступает в испаритель‚ где происходит испарение воды и поглощение ее паров раствором бромида лития — абсорбером. Воздух в помещении охлаждается.
  5. Разбавленный абсорбент снова нагревается в генераторе, и цикл запускается повторно.

Такая система кондиционирования пока не получила широкого распространения‚ но она полностью созвучна с современными тенденциями‚ касающимися энергосбережения, поэтому имеет хорошие перспективы.

Конструкция парокомпрессионных установок

На базе компрессионного охлаждения функционирует большинство холодильных установок. Охлаждение происходит за счет непрекращающейся циркуляции‚ кипения при низких показателях температуры‚ давления и конденсации хладоносителя в системе замкнутого типа.

В конструкцию чиллера этого класса входят:

  • компрессор;
  • испаритель;
  • конденсатор;
  • трубопроводы;
  • регулятор потока.

Хладагент циркулирует в замкнутой системе. Этим процессом управляет компрессор, в котором газообразное вещество с низкой температурой (-5⁰) и давлением 7 атм поддается компрессии при доведении температуры до 80⁰.

Сухой насыщенный пар в сжатом состоянии уходит в конденсатор, где происходит его охлаждение до 45⁰ при неизменном давлении и превращение в жидкость.

Следующий пункт на пути движения — дроссель (редукционный клапан). На этом этапе давление снижается от значения соответствующего конденсации до предела, при котором происходит испарение. Одновременно понижается и температура приблизительно до 0⁰. Жидкость частично испаряется и образовывается влажный пар.

На схеме изображен замкнутый цикл‚ по которому функционирует парокомпрессионная установка. В компрессоре (1) происходит сжатие влажного насыщенного пара до достижения им давления р1. В компрессоре (2) пар отдает тепло и трансформируется в жидкость. В дросселе (3) понижаются как давление (р3 – р4)‚ так и температура (T1-T2). В теплообменнике (4) давление (р2) и температура (T2) остаются неизменными

Поступив в теплообменник – испаритель‚ рабочее вещество‚ смесь пара и жидкости‚ отдает холод теплоносителю и забирает тепло у холодильного агента‚ подсушиваясь одновременно. Процесс происходит при постоянных показателях давления и температуры. Насосы подают жидкость с низкой температурой к фанкойлам. Пройдя этот путь, холодильный агент возвращается в компрессор‚ чтобы снова повторить весь парокомпрессионный цикл.

Специфика парокомпрессионного чиллера

В холодное время чиллер может работать в режиме природного охлаждения — это называется фрикулинг. При этом теплоноситель охлаждает уличный воздух. Теоретически использовать свободное охлаждение можно при внешней температуре менее 7⁰С. На практике оптимальная температура для этого 0⁰.

При настройке на режиме «тепловой насос» чиллер работает на отопление. Цикл претерпевает изменения‚ в частности, конденсатор и испаритель обмениваются своими функциями. В этом случае теплоноситель нужно подвергать не охлаждению, а нагреву.

Наиболее простыми являются моноблочные чиллеры. В них компактно объединены в одно целое все элементы. Они поступают в продажу укомплектованными на 100% вплоть до заправки хладагентом

Этот режим наиболее часто используют в больших офисах‚ общественных зданиях‚ на складах.Чиллер является холодильным агрегатом, дающим холода больше в 3 раза, чем потребляет. Его эффективность как отопителя еще выше — он затрачивает электроэнергии в 4 раза меньше‚ чем дает тепла.

Расчет теплообменника пластинчатого

Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.

Данные теплообменника, которые нужны для технического расчета:

  • тип среды (пример вода-вода, пар-вода, масло-вода и др.)
  • тепловая нагрузка (Гкал/ч) или мощность (кВт)
  • массовый расход среды (т / ч) — если не известна тепловая нагрузка
  • температура среды на входе в теплообменник °С (по горячей и холодной стороне)
  • температура среды на выходе из теплообменника °С (по горячей и холодной стороне)

Для расчета данных также понадобятся:

    • из технических условий (ТУ), которые выдает теплоснабжающая организация
    • из договора с теплоснабжающей организацией
    • из технического задания (ТЗ) от гл. инженера, технолога

Технические характеристики, на которые следует обратить внимание при выборе

Металлические устройства эффективны в эксплуатации до -10ºС. При пониженных температурах работоспособность заметно снижается. Вследствие чего применяется электрические преднагревательные элементы;
При выборе следует изучить толщину корпуса, материал мостиков холода. Толщина 3 см подлежит дополнительной изоляции, когда температура на улице станет ниже -5ºС

Вдвойне придется использовать изоляционный материал, если каркас сделан из алюминия;
Следует обращать особое внимание на показатели свободного напора вентиляторов. Может случиться так, что на 500 м3 напор может полностью отсутствовать

Об этом потребители узнают, как правило, когда рекуператор выходит из строя;
Большой плюс, когда к автоматической системе можно подключить дополнительные функции. Благодаря усовершенствованной автоматике, снижаются издержки в эксплуатации и повышается работа всего прибора;
Основной показатель для принятия решения, на каком рекуператоре остановить свой выбор – это вентиляционный напор и мощность. Предварительно делается расчет, сколько воздуха должно поступать в дом за один час.

Рекуператор с водяной циркуляцией

Характеристика

Тепловым энергоносителем является вода или антифриз, поступающий в приточное устройство из отдельно размещённого вытяжного теплообменника. Работа рекуператора с водяной циркуляцией сходственна с течением водяного обогрева. Полезность действия пластинчатого теплообменника с водяной циркуляцией достегает 50—65%. Приточно-вытяжную вентиляцию с рекуператорами такого типа применяют редко, когда есть возможность собрать теплообменную магистраль. Работа этой системы требует частого контроля. Слабым местом является наличие насоса, обеспечивающего циркуляцию теплообменного вещества. А также дополнительных узлов, регулирующих работу системы. Они увеличивают расход электроэнергии. При большом удалении приточного и вытяжного теплообменников применять такой вариант нецелесообразно. Рекуператор выполняет только функцию теплообмена без трансформации влаги.

Конструкция

Основными узлами приточно-вытяжной системы вентиляции с рекуперацией тепла являются два теплообменника. Они установлены отдельно в приточном и вытяжном воздуховоде. Соединяют их изолированным гибким трубопроводом. Он допускает более лёгкий выбор места размещения узлов и монтажа системы. Рекуператор с водяной циркуляцией комплектуют насосом, расширительным баком, контроллером, индикатором давления. Температурными датчиками. Воздушными, предохранительными и управляющими клапанами. При устройстве единой системы рекуперации возможны соединения нескольких теплоносителей. Разные пути вытяжки и притока воздуха обеспечивают работу рекуператора без образования следов обледенения. Исключён перенос загрязнений выходящим воздухом входному потоку.

Заключение

Механизм рекуперации воздуха является простейшим способом согрева помещения. Холодный уличный воздух подвергается предварительному обогреву практически без дополнительных энергозатрат. Разумеется, роторные рекуператоры воздуха при подключении к сети потребляют энергию для своей функции, но она расходуется в целом на обеспечение циркуляции потоков. Тот же пример с пластинчатыми рекуператорами показывает, насколько малоэффективна в работе может быть установка без электропривода. Также энергообеспечение требуется для питания управляющей инфраструктуры, которая обеспечивает работу всего приточно-вентиляционного комплекса. Обычно это минимальные затраты, но в результате они значительно упрощают процесс эксплуатации оборудования.

Источники

  • https://stroy-podskazka.ru/rekuperator/o-rotornyh/
  • https://climatdoma.net/ustroystva/ustanovki/rotorniy-rekuperator-vozduha.html
  • https://remboo.ru/inzhenernye-seti/ventilyatsiya/rekuperator-vozduha-svoimi-rukami.html
  • https://dom-i-remont.info/posts/ventiljacija/rotornyj-rekuperator-ustrojstvo-princzip-raboty-plyusy-i-minusy/
  • https://v-teplo.ru/rekuperatorov-vozduha-svoimi-rukami.html
  • https://dantex.ru/articles/rekuperatory-vozdukha-vidy-i-printsip-raboty/
  • https://TopVentilyaciya.ru/ventilyaciya/elementy/rotornyj-rekuperator.html
  • https://FB.ru/article/339574/rotornyiy-rekuperator-printsip-rabotyi-ustanovka
Оцените статью
ALPHA ДОМ
Добавить комментарий