Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Теплопроводность металлов и ее применение

Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель – удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов – это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов – золото, медь, серебро. Более низкая теплопроводность – у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование – ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение – при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы – кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Таблица 2

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами.Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев.Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ.Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль 0,015 0,0175 0,023 0,025… 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095… 0,1 0,1 0,103… 0,137 0,12 0,22 0,42 0,43… 0,51 0,5 0,6 0,94 1,05… 1,4 1,15… 1,35 1,2 1,3… 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

температурный коэффициент сопротивления

— это изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Краткое описание химических свойств и плотность алюминия

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом – при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

2Al + 3F2 = 2AlF3 (t o = 600 o C);

2Al + 2S = Al2S3 (t o = 150 – 200 o C);

2Al + N2 = 2AlN (t o = 800 – 1200 o C);

4Al + P4 = 4AlPt o = 500 – 800 o C, в атмосфере H2);

4Al + 3C = Al4C3 (t o = 1500 – 1700 o C).

По отношению к воде алюминий практически вполне устойчив. Сильно разбавленные, а также очень концентрированные растворы азотной и серной кислот на алюминий почти не действуют, тогда как при средних концентрациях этих кислот он постепенно растворяется.

По отношению к уксусной и ортофосфорной кислотам алюминий устойчив. Чистый металл довольно устойчив также и по отношению к соляной кислоте, но обычный технический в ней растворяется. Алюминий легко растворим в сильных щелочах:

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации

Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Читать также: Зарядное устройство для аккумуляторных батареек своими руками

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

Типы подключения радиаторов

Теплоотдача батарей зависит не только от материала, из которого они сделаны. Большое значение имеет тип подключения к трубам поступления и отвода отопления. Радиатор можно подключить:

  1. Диагональным способом. При этом подающая труба присоединяется слева сверху, а отвод — справа снизу. Такой вид является самым эффективным, поскольку позволяет равномерно прогреть всю батарею для хорошей теплоотдачи. Старые чугунные радиаторы отопления (таблица параметров приведена выше) подключались именно таким способом.
  2. Односторонним способом (боковое подключение). При этом трубы присоединяются с одной стороны. Такой вид подключения считается менее эффективным – если в радиаторе много секций, то они не могут прогреться в достаточной мере.
  3. Нижнее подключение – обе трубы присоединяются снизу с обеих сторон.
  4. Верхнее подключение. При данном виде трубы подсоединяются сверху: слева подающая, справа отводящая.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Выгоден ли биметаллический радиатор и насколько?

Чтобы подтвердить высокие показатели теплоотдачи, часто приводят данные с таблиц.

Материал, из которого изготовлен радиатор отопления Показатели теплоотдачи (Вт/м*К)
Чугун 53
Сталь 66
Алюминий 230
Биметалл 380

Такие сведения, которые выгодно отличаются на фоне «собратьев» часто используют и для рекламы в роли достоверных данных о теплоотдаче различных систем водяного отопления. Хотя о том, что теплоотдача биметаллических радиаторов выше, чем у аналогов, хорошо известно всем и без данных из справочника, но неужели разница и правда может быть до 40%?

От чего зависит фактор теплоотдачи

  • Тепловой напор радиатора играет следующую роль – выше больше разница между температурой воздуха и средних данных температуры поверхности, тем сильнее тепловой потом, который передается в воздух помещения.
  • Теплопроводность материала, из которого выполнен радиатор – чем выше показатель теплопроводности, тем меньше будет разница между наружной стенкой радиатора и температурой носителя.
  • Размеры обогревательной системы и количество секций.
  • Давление и температура теплоносителя.


Тепловой напор — это первый критерий, который рассчитывают как разность полусумм и температуры воздуха в помещении. Есть даже определенный поправочный коэффициент, который помогает уточнить теплоотдачу радиатора при расчете мощности системы для комнаты.

По таблице поправочных коэффициентов можно сделать вывод, что те данные о теплоотдаче биметаллического радиатора будут соответствовать реальности только при первом часе работы системы отопления, так как такие данные возможны только при перепаде температур в холодном помещении. Обычно теплоносители редко нагреваются выше, чем 85 градусов, а значит, максимальная отдача тепла доступна при комнатных 15 градусах.

Теплопроводность материала стенки радиатора — это второй критерий, при котором радиатор, сделанный из биметалла, сильно проигрывает конструкции из алюминия. Приведенное на схеме устройство секции отопления из биметалла ясно показывает, что стенки состоит из алюминия и стали. Даже если толщина стенки будет одинаковой в аналогичных условиях, биметаллический корпус не сможет быть лучше по теплоотдаче, чем алюминиевая система отопления.

Обычно размеры этих двух отопительных систем совпадают и рассчитаны на установку под подоконником. Отметим, что конструкция из алюминия и биметалла занимает больше по площади места, чем стальные или чугунные модели. По этой причине теплоотдача может быть сильнее, чем при стандартом расчете на основании одних лишь свойств металлов – теплоемкости и теплопроводности. Теперь осталось разобраться с давлением и температурой теплоносителя.

Идеальные условия использования биметаллических радиаторов

Во многом устройство и схема алюминиевой биметаллической системы похожи. Внутри секции есть основной канала, по которому и будет двигаться разогретый теплоноситель. Размеры и форма канала будут соответствовать сечению подводящей трубы, а это значит, что жидкость не будет подвержена дополнительным завихрениям и не будет локальных мест перегрева.

Из табличных данных, на которые мы уже опирались выше, становится ясно, что эти два типа радиаторных конструкций проектируют при расчете на высокое давление и высокую температуру теплоносителя. В этом случае все преимущества очевидны. Для начала, разность температур увеличивается, и вместо обычных 70 градусов разницы может быть уже и 100. К примеру, на входе в систему отопления давление и температура теплоносителя равны 18 бар и 110 градусов, а для паровых систем и все 120 градусов. Значит, имеем поправочный коэффициент эффективности теплоотдачи 1,2 , что равно 20%.

Хотя все производители дают одинаковый срок службы и гарантии для двух типов теплообменников, на самом деле работать на протяжении длительного времени может только биметалл. При наличии различных присадок горячая вода все равно будет действовать разрушительно для алюминия. Другое ли дело легирующая сталь с добавками в виде никеля и марганца, срок службы которой может быть равен и 15 лет.

Теплопроводность алюминиевых сплавов

Представлена сводная таблица теплопроводности алюминиевых сплавов. В ней приведены значения теплопроводности распространенных алюминиевых сплавов (сплавы алюминия с кремнием, медью, магнием и цинком, литейные сплавы, дюралюминий) при различной температуре в диапазоне от 4 до 700К.

По данным таблицы видно, что теплопроводность алюминиевых сплавов в основном увеличивается с ростом температуры. Наибольшей теплопроводностью при комнатной температуре обладает такой сплав, как АД1 — его теплопроводность при этой температуре равна 210 Вт/(м·град). Более низкая теплопроводность свойственна в основном литейным алюминиевым сплавам, например АК4, АЛ1, АЛ8 и другим.

Температура в таблице в градусах Кельвина !

Таблица теплопроводности сплавов алюминия
Алюминиевый сплав Температура, K Теплопроводность алюминиевого сплава, Вт/(м·град)
АВ 298…373…473…573 176…180…184…189
АД1 нагартованный 4…10…20…40…80…150…300 50…130…260…400…250…220…210
АД31 закаленный, состаренный 4…10…20…40…80…200…300…600 35…87…170…270…230…200…190…190
АД33 300…373…473…573 140…151…163…172
АД35 298…373…473…573 170…174…178…182
АК4 300…500…600…700 145…160…170…170
АК6 закаленный, состаренный 20…77…223…293…373…473…573…673 35…90…192…176…180…184…184…189
АК8 закаленный, состаренный 20…40…80…150…300…573…673 50…72…100…125…160…180…180
АЛ1 300…400…600 130…140…150
АЛ2 20…77…293 10…18…160
АЛ4 300…473…673 150…160…155
АЛ5 300…473…573 160…170…180
АЛ8 300…473…673 92…100…110
АМг1 298…373…473…573…673 184…188…192…188…188
АМг2 4…10…20…40…80…150…300…373…473…573…673 4,6…12…25…49…77…100…155…159…163…164…167
АМг3 20…77…90…203…293 41…86…89…123…132
АМг5 отожженный 10…20…40…80…150…300…473…673 10…20…40…66…92…130…130…150
АМг6 20…77…173…293 13…43…75…92
АМц нагартованный 4…10…20…40…80…150…300…473…573…673 11…28…58…110…140…150…180…180…184…188
В93 300…473…673 160…170…160
В95 300…473…673 155…160…160
ВАД1 20…80…300 30…61…160
ВАЛ1 300…473…673 130…150…160
ВАЛ5 300…573…673 150…160…160
ВД17 300…673 130…170
Д1 298…373…473…573…673 117…130…150…172…176
Д16 закаленный, состаренный 10…20…40…80…150…300…373…473…573 9…19…37…61…90…120…130…146…163
Д20 закаленный, состаренный 20…40…80…150…300…373…473…573…673 27…38…61…85…140…142…147…155…160
Д21 298…373…473…573 130…138…151…168

Можно ли повысить показатель?

Ученые провели эксперимент по увеличение параметра с использованием графена. Они наносили слой графена на медные поверхности. Для этого применялась технология осаждения графеновых частиц из газа.

Показатель теплопроводности медной заготовки увеличился, поскольку зерна в структуре стали больше. Благодаря этому повысилась проходимость свободных электронов. При нагревании меди без графенового напыления размер зерен не был увеличен.

Также внимание нужно уделить влиянию концентрации углерода на показатель. У стали с высоким содержанием углерода он выше

Благодаря этому из высокоуглеродистой стали изготавливаются трубы, запорная арматура.

Графен (Фото: Instagram / kalabs_lab)

Оцените статью
ALPHA ДОМ
Добавить комментарий